Question 106

If √2 = 1.4142, find the value of $$2\sqrt{2} + \sqrt{2} + \frac{1}{2+\sqrt{2}} + \frac{1}{\sqrt{2} + 1}$$

Solution

Expression : $$2\sqrt{2} + \sqrt{2} + \frac{1}{2+\sqrt{2}} + \frac{1}{\sqrt{2} + 1}$$

= $$2\sqrt{2} + \sqrt{2} + [\frac{1}{2+\sqrt{2}}\times(\frac{2-\sqrt2}{2-\sqrt2})] + [\frac{1}{\sqrt{2} + 1}\times(\frac{\sqrt2-1}{\sqrt2-1})]$$

= $$3\sqrt2+\frac{2-\sqrt2}{2}+\frac{\sqrt2-1}{1}$$

= $$\frac{1}{2} [6\sqrt2+2-\sqrt2+2\sqrt2-2]$$

= $$\frac{1}{2}[7\sqrt2]$$

= $$3.5\times1.4142=4.9497$$

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App