Question 105

If 4x = sec θ and 4/x = tan θ then $$(x^2 - \frac{1}{x^2})$$ is

Solution

$$4x = sec θ$$
$$x = \frac{sec θ}{4}$$
$$x^2 = \frac{sec^2 θ}{16}$$
$$\frac{4}{x} = tan θ$$
$$\frac{1}{x} = \frac{tan θ}{4} $$
$$\frac{1}{x^2} = \frac{tan^2 θ}{16} $$
$$ x^2 - \frac{1}{x^2} = \frac{sec^2 θ}{16} - \frac{tan^2 θ}{16} $$
$$ x^2 - \frac{1}{x^2} = \frac{sec^2 θ - tan^2 θ}{16}$$
$$sec^2 θ - tan^2 θ =1$$
$$ x^2 - \frac{1}{x^2} = \frac{1}{16}$$
Hence Option A is the correct answer


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App