If A, B and C be the angles of a triangle, then out of the following, the incorrect relation is:
If A, B and C be the angles of a triangle, then $$\angle$$ A + $$\angle$$ B + $$\angle$$ C = $$180^\circ$$
=>Â $$\angle$$Â A +Â $$\angle$$Â B = $$180^\circ$$ -Â $$\angle$$Â C
=> $$\frac{\angle A+\angle B}{2}=90^\circ-\frac{\angle C}{2}$$ -------------(i)
(A) :Â $$tan(\frac{A+B}{2})=tan(90^\circ-\frac{\angle C}{2})=cot(\frac{\angle C}{2})\neq sec(\frac{\angle C}{2})$$
(B) :Â $$cot(\frac{A+B}{2})=cot(90^\circ-\frac{\angle C}{2})=tan(\frac{\angle C}{2})$$
(C) :Â $$sin(\frac{A+B}{2})=sin(90^\circ-\frac{\angle C}{2})=cos(\frac{\angle C}{2})$$
(D) :Â $$cos(\frac{A+B}{2})=cos(90^\circ-\frac{\angle C}{2})=sin(\frac{\angle C}{2})$$
=> Ans - (A)
Create a FREE account and get: