By melting two solid metallic spheres of redii 1 cm and 6 cm, a hollow sphere of thickness 1 cm is made. The external radios of the hollow sphere will be
Given $$r_{1} = 1$$ cm and $$r_{2}$$ = 6 cm
Volume of 1st sphere = $$\frac{4}{3} \pi r_{1}^{3}$$ =Â $$\frac{4}{3} \pi 1^{3}$$ = $$\frac{4}{3}\pi$$
Volume of 2nd sphere =Â $$\frac{4}{3} \pi r_{2}^{3}$$ =Â $$\frac{4}{3} \pi (6)^{3}$$Â
Combined volume of two spheres =Â $$\frac{4}{3} \pi (217)$$Â
Let outer radius of hollow sphere = $$x$$ then inner radius = $$x - 1$$Â
Volume of the hollow sphere is given by,
$$\frac{4}{3} \pi (x^{3} - (x - 1)^{3})$$Â =Â $$\frac{4}{3} \pi (217)$$Â
$$x^{3}-(x - 1)^{3} = 217$$Â
$$x^{3}-x^{3} - 1 -3x^{2} + 3x = 217$$Â
$$3x^{2} - 3x - 216 = 0$$Â
x = 9 or -8 (which cannot be a solution)
Hence, option C is the correct answer.
Create a FREE account and get: