Which of the following relations is/are true?
I. $$\sqrt{7}+\sqrt{3}>\sqrt{5}+\sqrt{5}$$
II. $$\sqrt{5}+\sqrt{5}>\sqrt{2}+\sqrt{8}$$
III. $$\sqrt{5}+\sqrt{5}>\sqrt{7}+\sqrt{3}$$
The sum of (7,3), (5,5) and (2,8) is 10
Thus, squaring all the terms we get : $$(\sqrt7+\sqrt3)^2=10+2\sqrt{21}$$
$$(\sqrt5+\sqrt5)^2=10+2\sqrt{25}$$
and $$(\sqrt2+\sqrt8)^2=10+2\sqrt{16}$$
$$\because$$ First term is same (10) in all, thus $$\sqrt{25}>\sqrt{21}>\sqrt{16}$$
$$\therefore$$Â $$\sqrt{5}+\sqrt{5}>\sqrt{7}+\sqrt{3}>\sqrt2+\sqrt8$$
=> Ans - (B)
Create a FREE account and get: