The speed of train A is 16 km/h less than the speed of train B. To cover a distance of 384 km, B takes 4 hours less time than A. What is the speed (in km/h) of train B?
Let B speed $$x $$ Km/hr and time taken by A is t hrÂ
For BÂ Â Â $$x = \dfrac {384}{t-4} $$Â Â
Again for A $$ x-16 = \dfrac {384}{t}$$
we the value of x and solve it
$$\Rightarrow \dfrac {384}{t-4}Â - 16 = \dfrac {384}{t}$$
$$\Rightarrow \dfrac {384-16t+ 64}{t-4} = \dfrac {384}{t}$$
$$\Rightarrow 384 t - 16 t^2 + 64 t = 384 t - 384\times 4 $$
$$\Rightarrow 16t^2 - 64t - 1536 = 0 $$
$$\Rightarrow t^2 - 4t - 96 = 0 $$
$$\Rightarrow (t-12)(t+2)= 0 $$
$$\Rightarrow t= 12 , t= - 2 $$
then speed of train B =$$ \dfrac {384} {12-4}$$
$$\Rightarrow \dfrac {384}{8} = 48 $$ km/hr AnsÂ
Create a FREE account and get: