In ∆XYZ measure of angle Y is 90°. If cosecX = 17/15, and XY = 4cm, then what is the length (in cm) of side YZ?
Given : $$\cosec X$$ = $$\frac{17}{15}$$
Also, $$\cosec X=\frac{XZ}{YZ}=\frac{17}{15}$$
Let XZ = $$17x$$ cm and YZ = $$15x$$ cm
Thus, in $$\triangle$$ XYZ, => $$(XY)^2=(XZ)^2-(YZ)^2$$
=> $$(XY)^2=(17x)^2-(15x)^2$$
=> $$(XY)^2=289x^2-225x^2=64x^2$$
=> $$XY=\sqrt{64x^2}=8x$$ cm
According to ques, => $$8x=4$$
=> $$x=\frac{4}{8}=\frac{1}{2}$$
$$\therefore$$ YZ = $$15\times\frac{1}{2}=7.5$$ cm
=> Ans - (A)
Create a FREE account and get: