Question 96

If 4x - 5(2x - 1) > 2x + 3 > 2 - 3x; then x can take which of the following values?

Solution

Expression 1 : $$2x + 3$$ > $$2 - 3x$$

=> $$2x + 3x$$ > $$2 - 3$$

=> $$x$$ > $$\frac{-1}{5}$$ ----------(i)

Expression 2 : $$4x - 5(2x - 1)$$ > $$2x + 3$$

=> $$-6x + 5$$ > $$2x + 3$$

=> $$2x + 6x$$ < $$5 - 3$$

=> $$x$$ < $$\frac{1}{4}$$ ------(ii)

Combining inequalities (i) and (ii), we get : $$\frac{-1}{5}$$ < $$x$$ < $$\frac{1}{4}$$

Thus, only value that $$x$$ can take among the options = 0

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App