Expression : (cosec A - sin A)(sec A - cos A)(tan A + cot A)
= $$(\frac{1}{sinA}-sinA)(\frac{1}{cosA}-cosA)(\frac{sinA}{cosA}+\frac{cosA}{sinA})$$
= $$(\frac{1-sin^2A}{sinA})(\frac{1-cos^2A}{cosA})(\frac{sin^2A+cos^2A}{sinA cosA})$$
$$\because(sin^2A+cos^2A=1)$$
= $$(\frac{cos^2A}{sinA})(\frac{sin^2A}{cosA})(\frac{1}{sinA cosA})$$
= $$\frac{sin^2Acos^2A}{sin^2Acos^2A}=1$$
=> Ans - (C)
Create a FREE account and get: