Given : $$tan\theta+cot\theta=x$$
Squaring both sides,
=> $$(tan\theta+cot\theta)^2=(x)^2$$
=> $$tan^2\theta+cot^2\theta+2(tan\theta)(cot\theta)=x^2$$
=> $$tan^2\theta+cot^2\theta+2=x^2$$ [$$\because tan\theta cot\theta=1$$]
=> $$tan^2\theta+cot^2\theta=x^2-2$$
Again squaring both sides, we get :
=> $$(tan^2\theta+cot^2\theta)^2=(x^2-2)^2$$
=> $$tan^4\theta+cot^4\theta+2(tan^2\theta)(cot^2\theta)=x^4-4x^2+4$$
=> $$tan^4\theta+cot^4\theta+2=x^4-4x^2+4$$
=> $$tan^4\theta+cot^4\theta=x^2(x^2-4)+4-2$$
=> $$tan^4\theta+cot^4\theta=x^2(x^2-4)+2$$
=> Ans - (D)
Create a FREE account and get: