Expression : (cotAcotB - 1) / (cotB + cotA) = x
= $$(\frac{cos A}{sin A} \frac{cos B}{sin B} - 1) \div (\frac{cos B}{sin B} + \frac{cos A}{sin A})$$
= $$(\frac{cos Acos B - sin Asin B}{sin Asin B}) \div (\frac{sin Acos B + cos Asin B}{sin Asin B})$$
= $$(\frac{cos (A + B)}{sin Asin B}) \div (\frac{sin (A + B)}{sin Asin B})$$
= $$(\frac{cos (A + B)}{sin Asin B}) \times (\frac{sin Asin B}{sin (A + B)})$$
= $$\frac{cos (A + B)}{sin (A + B)} = cot (A + B)$$
=> Ans - (C)
Create a FREE account and get: