If $$cosec^2$$ θ = 625/576, then what is the value of [(sin θ - cos θ)/(sin θ + cos θ)]?
Given : $$cosec^2\theta=\frac{625}{576}$$
=> $$cosec\theta=\sqrt{\frac{625}{576}}=\frac{25}{24}$$
=> $$sin\theta=\frac{24}{25}$$
Using, $$sin^2\theta+cos^2\theta=1$$
=> $$cos^2\theta=1-(\frac{24}{25})^2$$
=> $$cos^2\theta=1-\frac{576}{625}=\frac{(625-576)}{625}=\frac{49}{625}$$
=> $$cos\theta=\sqrt{\frac{49}{625}}=\frac{7}{25}$$
$$\therefore$$ $$(sin\theta-cos\theta)=\frac{24}{25}-\frac{7}{25}=\frac{17}{25}$$
Similarly, $$(sin\theta+cos\theta)=\frac{24}{25}+\frac{7}{25}=\frac{31}{25}$$
To find : $$\frac{(sin\theta-cos\theta)}{(sin\theta+cos\theta)}$$
= $$\frac{17}{25}\div\frac{31}{25}$$
= $$\frac{17}{25}\times\frac{25}{31}=\frac{17}{31}$$
=> Ans - (C)
Create a FREE account and get: