If 5x + 2 > 3x + 1 and 4(x - 4) - 2 ≤ 3x - 1, then x can take which of the following values?
Expression 1 : 5x + 2 > 3x + 1
=> $$5x-3x$$ > $$1-2$$
=> $$2x$$ > $$-1$$
=> $$x$$ > $$\frac{-1}{2}$$ ------------(i)
Expression 2 : 4(x - 4) - 2 ≤ 3x - 1
=> $$4x-16-2 \leq 3x-1$$
=> $$4x-3x \leq -1+18$$
=> $$x \leq 17$$ --------------(ii)
Combining inequalities (i) and (ii), we get : $$\frac{-1}{2}$$ < $$x \leq 17$$
The only value that $$x$$ can take among the options = 16
=> Ans - (A)
Create a FREE account and get: