In the given figure. PR and ST are perpendicular to tangent QR. PQ passes through centre 0 of the circle whose diameter is 10 cm. If PR = 9 cm. then what is the length (in cm) of ST?Â
Given : PR = 9 cm and radius OM = PO = OS = 5 cm
To find : ST = $$x$$ = ?
Solution : Let SQ = $$y$$ cm
In $$\triangle$$ PRQ and $$\triangle$$ OMQ
=> $$\angle$$ PRQ = $$\angle$$ OMQ = $$90^\circ$$
and $$\angle$$ PQR = $$\angle$$ OQM   (common angle)
=> $$\triangle$$Â PRQ $$\sim$$ $$\triangle$$ OMQÂ
=> $$\frac{PR}{PQ}=\frac{OM}{OQ}$$
=> $$\frac{9}{10+y}=\frac{5}{5+y}$$
=> $$45+9y=50+5y$$
=> $$9y-5y=50-45$$
=> $$y=\frac{5}{4}$$ -------------(i)
Similarly, in $$\triangle$$ PRQ and $$\triangle$$ STQ
=> $$\frac{PR}{PQ}=\frac{ST}{SQ}$$
=> $$\frac{9}{10+y}=\frac{x}{y}$$
=> $$9y=10x+xy$$
=> $$9\times\frac{5}{4}=x(10+\frac{5}{4})$$
=> $$\frac{45}{4}=x\frac{45}{4}$$
=> $$x=ST=1$$ cm
=> Ans - (A)
Create a FREE account and get: