In the given figure. ABC is a triangle in which. AB = 10 cm. AC = 6 cm and altitude AE = 4 cm. If AD is the diameter of the circum-circle. then what is the length (in cm) of circum-radius?Ā
GivenĀ :Ā AB = 10 cm. AC = 6 cm and altitude AE = 4 cm
To findĀ : Circumradius = $$R$$ = ?
SolutionĀ : In $$\triangle$$ ACE,
=> $$(CE)^2=(AC)^2-(AE)^2$$
=> $$(CE)^2=(6)^2-(4)^2$$
=> $$(CE)^2=36-16=20$$
=> $$CE=\sqrt{20}$$ cm
Similarly, $$BE = \sqrt{100-16}=\sqrt{84}$$ cm
Now, BC = BE+CE = $$(\sqrt{20}+\sqrt{84})$$ cm
Area of $$\triangle$$ ABC = $$\frac{1}{2}\times(AE)\times(BC)$$
=>Ā $$\triangle=\frac{1}{2}\times4\times(\sqrt{20}+\sqrt{84})$$
=> $$\triangle=2(\sqrt{20}+\sqrt{84})$$ $$cm^2$$
$$\therefore$$ Circumradius, $$R=\frac{abc}{4\triangle}$$
= $$\frac{10\times6\times(\sqrt{20}+\sqrt{84})}{4\times2(\sqrt{20}+\sqrt{84})}$$
= $$\frac{60}{8}=7.5$$ cm
=> Ans - (B)
Create a FREE account and get: