Given : $$tan(\frac{A}{2})=x$$
Using double angle formula, $$tan(A)=\frac{2x}{1-x^2}$$
=> $$tan^2(A)=\frac{4x^2}{1-2x^2+x^4}$$
Also, $$sec^2(A)=1+tan^2(A)$$
=> $$sec^2(A)=1+(\frac{4x^2}{1-2x^2+x^4})$$
=> $$sec^2(A)=\frac{(1-2x^2+x^4)+(4x^2)}{1-2x^2+x^4}$$
=> $$sec^2(A)=\frac{1+2x^2+x^4}{1-2x^2+x^4}$$
=> $$sec^2(A)=(\frac{1+x^2}{1-x^2})^2$$
=> $$sec(A)=\frac{1+x^2}{1-x^2}$$
=> $$cos(A)=\frac{1-x^2}{1+x^2}$$
=> $$cos(A)+x^2cos(A)=1-x^2$$
=> $$x^2[1+cos(A)]=1-cos(A)$$
=> $$x=\sqrt{\frac{1-cos(A)}{1+cos(A)}}$$
=> Ans - (D)
Create a FREE account and get: