Equation 1 : $$a - b = 3$$
=> $$a = 3 + b$$
Equation 2 : $$a \times b = 28$$
Substituting value of 'a' in equation 2, we get :
=> $$(3 + b) b = 28$$
=> $$3b + b^2 = 28$$
=> $$b^2 + 3b - 28 = 0$$
=> $$b^2 - 4b + 7b - 28 = 0$$
=> $$b(b - 4) + 7(b - 4) = 0$$
=> $$(b - 4) (b + 7) = 0$$
=> $$b = 4 , -7$$
=> $$a = 7 , -4$$
$$\therefore a^3 - b^3 = (7)^3 - (4)^3$$ (or) $$(-4)^3 - (-7)^3$$
= $$343 - 64 = 279$$
Create a FREE account and get: