If 4x-7<x-2 and $$5x+\frac{2}{3}\geq3x+1$$; then x can take which of the following values?
Expression 1Â :Â 4x - 7 < x - 2
=> $$4x-x$$ < $$7-2$$
=> $$3x$$ < $$5$$
=> $$x$$ < $$\frac{5}{3}$$ ------------(i)
Expression 2 :Â $$5x+\frac{2}{3}\geq3x+1$$
=> $$5x-3x \geq 1-\frac{2}{3}$$
=> $$2x \geq \frac{1}{3}$$
=> $$x \geq \frac{1}{6}$$ -----------(ii)
Combining inequalities (i) and (ii), we get : $$\frac{1}{6} \leq x$$ < $$\frac{5}{3}$$
The only value that $$x$$ can take among the options = 1
=> Ans - (D)
Create a FREE account and get: