Using double angle formula, we know that $$cos(2\theta) = cos^2\theta - sin^2\theta$$
=> $$cos(2\theta) = (1 - sin^2\theta) - sin^2\theta$$
=> $$cos(2\theta) = 1 - 2sin^2\theta$$
Replacing $$\theta$$ by $$\frac{A}{2}$$, we get :
=> $$cos A = 1 - 2sin^2(\frac{A}{2})$$
=> $$2sin^2(\frac{A}{2}) = 1 - cosA$$
=> $$sin^2(\frac{A}{2}) = \frac{(1-cosA)}{2}$$
=> $$sin(\frac{A}{2}) = \sqrt{\frac{(1 - cos A)}{2}}$$
Similarly, => $$cos(\frac{A}{2}) = \sqrt{\frac{(1 + cos A)}{2}}$$
Now, to find : $$tan(\frac{A}{2})$$
= $$sin(\frac{A}{2}) \div cos(\frac{A}{2})$$
= $$\sqrt{\frac{(1 - cos A)}{2}}$$Â $$\div$$ $$\sqrt{\frac{(1 + cos A)}{2}}$$
= $$\sqrt{\frac{(1 - cos A)}{2}}$$Â $$\times$$ $$\sqrt{\frac{2}{(1 + cos A)}}$$
= $$\sqrt{\frac{1-cosA}{1+cosA}}$$
= $$\sqrt{\frac{1-cosA}{1+cosA} \times \frac{1+cosA}{1+cosA}}$$
= $$\sqrt{\frac{1-cos^2A}{(1+cosA)^2}} = \sqrt{\frac{sin^2A}{(1+cosA)^2}}$$
= $$\frac{sinA}{1+cosA}$$
Dividing both numerator and denominator by $$(cosA)$$
=Â $$\frac{tanA}{1+secA}$$
=> Ans - (A)
Create a FREE account and get: