As, the denominators are 4, 6, 8, 9 in each option
take L.C.M. of 4, 6, 8, 9 = 72
Now, make all the denominators equal to 72.
Since 1 is common in each question, we can ignore it,
Option A: $$1\frac{1*18}{4*18}>1\frac{5*12}{6*12}>1\frac{7*9}{8*9}>1\frac{8*8}{9*8}$$
        $$1\frac{18}{72}>1\frac{60}{72}>1\frac{63}{72}>1\frac{64}{72}$$Â
        (condition does not satisfy)
Option B:Â $$1\frac{1*18}{4*18}>1\frac{7*9}{8*9}>1\frac{8*8}{9*8}>1\frac{5*12}{6*12}$$
       $$1\frac{18}{72}>1\frac{63}{72}>1\frac{64}{72}>1\frac{60}{72}$$Â
        (condition does not satisfy)
Option C:Â $$1\frac{8*8}{9*8}>1\frac{7*9}{8*9}>1\frac{5*12}{6*12}>1\frac{1*18}{4*18}$$
       $$1\frac{64}{72}>1\frac{63}{72}>1\frac{60}{72}>1\frac{18}{72}$$Â
        (condition satisfies)
Option D:Â $$1\frac{8*8}{9*8}>1\frac{5*12}{6*12}>1\frac{1*18}{4*18}>1\frac{7*9}{8*9}$$
       $$1\frac{64}{72}>1\frac{60}{72}>1\frac{4}{72}>1\frac{63}{72}$$Â
       (condition does not satisfy)
Hence, option C is correct.
Create a FREE account and get: