$$\sqrt{2}$$, $$\sqrt[3]{3}$$, $$\sqrt[5]{5}$$, $$\sqrt[7]{7}$$
$${2^\frac{1}{2}}$$, $${3^\frac{1}{3}}$$, $${5^\frac{1}{5}}$$, $${7^\frac{1}{7}}$$
Now, take L.C.M. of denominators of power
L.C.M. of (2, 3, 5, 7) = 210
$${2^\frac{1*105}{2*105}}$$, $${3^\frac{1*70}{3*70}}$$, $${5^\frac{1*42}{5*42}}$$, $${7^\frac{1*30}{7*30}}$$
$${2^\frac{105}{210}}$$, $${3^\frac{70}{210}}$$, $${5^\frac{42}{210}}$$, $${7^\frac{30}{210}}$$
$$\sqrt[210]{{2}^{105}}$$, $$\sqrt[210]{{3}^{70}}$$, $$\sqrt[210]{{5}^{42}}$$, $$\sqrt[210]{{7}^{30}}$$
The largest power is of 2. So, $$\sqrt{2}$$ will be the largest number.
Hence, option A is correct.
Create a FREE account and get: