Question 89

Which of the following statement is/are true ?

I. $$\sqrt{144}\times\sqrt{36}<\sqrt[3]{125}\times\sqrt{121}$$
II.$$\sqrt{324}+\sqrt{49}>\sqrt[3]{216}\times\sqrt{9}$$

Solution

I : $$\sqrt{144}\times\sqrt{36}<\sqrt[3]{125}\times\sqrt{121}$$

L.H.S. = $$12\times6=72$$

R.H.S. = $$5\times11=55$$

Thus, L.H.S. > R.H.S.

II : $$\sqrt{324}+\sqrt{49}>\sqrt[3]{216}\times\sqrt{9}$$

L.H.S. = $$18+7=25$$

R.H.S. = $$6\times3=18$$

Thus, L.H.S. > R.H.S., which is correct.

$$\therefore$$ Only II is correct.

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App