If a(a + b + c) = 45, b(a + b + c) = 75 and c(a + b + c) = 105, then what is the value of $$(a^{2}+b^{2}+c^{2})$$ ?
Given : $$a(a+b+c)=45$$
=> $$a^2+ab+ac=45$$ ------------(i)
Similarly, $$ab+b^2+bc=75$$ ------------(ii)
and $$ac+bc+c^2=105$$ ------------(iii)
Adding equations (i),(ii) and (iii),
=> $$a^2+b^2+c^2+2ab+2bc+2ac=45+75+105$$
=> $$(a+b+c)^2=(15)^2$$
=> $$a+b+c=15$$
Substituting above value in equation (i), => $$a=\frac{45}{15}=3$$
Similarly, $$b=5$$ and $$c=7$$
$$\therefore$$Â $$(a^{2}+b^{2}+c^{2})$$
= $$(3)^2+(5)^2+(7)^2$$
= $$9+25+49=83$$
=> Ans - (B)
Create a FREE account and get: