Expression : $$\frac{(x^{2}-5x+6)}{(x^{2}-3x+2)}\div\frac{(x^{2}-7x+12)}{(x^{2}-5x+4)}$$
Here, $$x^2-5x+6 = x^2-3x-2x+6$$
= $$x(x-3)-2(x-3)=(x-2)(x-3)$$
Similarly for other terms, we get :
= $$\frac{(x-2)(x-3)}{(x-1)(x-2)}\div\frac{(x-3)(x-4)}{(x-1)(x-4)}$$
= $$\frac{x-3}{x-1}\times\frac{x-1}{x-3}$$
= $$1$$
=> Ans - (A)
Create a FREE account and get: