Expression :Â $$x=\frac{2+\sqrt{3}}{2-\sqrt{3}}$$
Rationalizing the denominator,
=>Â $$x=\frac{2+\sqrt{3}}{2-\sqrt{3}}\times\frac{(2+\sqrt3)}{(2+\sqrt3)}$$
=> $$x=\frac{(2+\sqrt3)^2}{4-3}=(2+\sqrt3)^2$$
=> $$x=4+3+4\sqrt3=7+4\sqrt3$$ ----------(i)
Squaring both sides, we get :
=> $$x^2=(7+4\sqrt3)^2$$
=> $$x^2=49+48+56\sqrt3=97+56\sqrt3$$ --------------(ii)
To find : $$x^{2}+x-9$$
Substituting values from equations (i) and (ii),
= $$(97+56\sqrt3)+(7+4\sqrt3)-9$$
= $$95+60\sqrt3$$
=> Ans - (D)
Create a FREE account and get: