If $$x+\frac{1}{x}=3$$, then what is the value of $$\frac{x^4+5x^3+3x^2+5x+1}{x^4+1}$$ ?
Given : $$x+\frac{1}{x}=3$$
=> $$\frac{x^2+1}{x}=3$$
=> $$x^2+1=3x$$ ---------(i)
Squaring both sides, we get :
=> $$(x^2+1)^2=(3x)^2$$
=> $$x^4+1+2x^2=9x^2$$
=> $$x^4+1=9x^2-2x^2=7x^2$$ -----------(ii)
To find : $$\frac{x^4+5x^3+3x^2+5x+1}{x^4+1}$$
= $$\frac{(x^4+1)+5x(x^2+1)+3x^2}{(x^4+1)}$$
Substituting values from equations (i) and (ii),
= $$\frac{7x^2+5x(3x)+3x^2}{7x^2}$$
= $$\frac{25x^2}{7x^2}=\frac{25}{7}$$
=> Ans - (A)
Create a FREE account and get: