If $$x+\frac{1}{x}=17$$, then what is the value of $$\frac{x^4+\frac{1}{x^2}}{x^2-3x+1}$$ ?
Given : $$x+\frac{1}{x}=17$$ ------------(i)
=> $$\frac{x^2+1}{x}=17$$
=> $$x^2+1=17x$$ --------(ii)
Cubing equation (i), we get :
=> $$(x+\frac{1}{x})^3=(17)^3$$
=> $$x^3+\frac{1}{x^3}+3(x)(\frac{1}{x})(x+\frac{1}{x})=4913$$
=> $$x^3+\frac{1}{x^3}+3(17)=4913$$
=> $$x^3+\frac{1}{x^3}=4913-51=4862$$ -------------(iii)
To find : $$\frac{x^4+\frac{1}{x^2}}{x^2-3x+1}$$
Substituting value from equation (ii),
=Â $$\frac{x^4+\frac{1}{x^2}}{17x-3x}=\frac{x^4+\frac{1}{x^2}}{14x}$$
= $$\frac{1}{14}(x^3+\frac{1}{x^3})$$
Substituting value from equation (iii),
= $$\frac{4862}{14}=\frac{2431}{7}$$
=> Ans - (A)
Create a FREE account and get: