If 4(2x+3)>5-x and 5x -3(2x-7)>3x-1, then x can take which of the following values?
Expression 1 : 4(2x+3)>5-x
=> $$8x+12$$ > $$5-x$$
=> $$8x+x$$ > $$5-12$$
=> $$9x$$ > $$-7$$
=> $$x$$ > $$\frac{-7}{9}$$ -----------(i)
Expression 2 : 5x -3(2x-7)>3x-1
=> $$5x-6x+21$$ > $$3x-1$$
=> $$3x+x$$ < $$21+1$$
=> $$4x$$ < $$22$$
=> $$x$$ < $$\frac{11}{2}$$ ----------(ii)
Combining inequalities (i) and (ii), we get : $$\frac{-7}{9}$$ < $$x$$ < $$\frac{11}{2}$$
The only value that $$x$$ can take among the options = 5
=> Ans - (C)
Create a FREE account and get: