Question 86

If m = - 4, n = - 2, then the value of $$m^3 - 3m^2 + 3m + 3n + 3n^2 + n^3$$ is

Solution

We are given that m = -4 and n = -2

Expression : $$m^3 - 3m^2 + 3m + 3n + 3n^2 + n^3$$

= $$(m^3 - 3m^2 + 3m - 1) + (n^3 + 3n^2 + 3n + 1)$$

= $$(m-1)^3 + (n+1)^3$$

= $$(-4-1)^3 + (-2+1)^3$$

= $$(-5)^3 + (-1)^3$$

= $$-125 - 1 = -126$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App