Question 86

If $$\dfrac{x^{2}}{yz}+\dfrac{y^{2}}{zx}+\dfrac{z^{2}}{xy}=3$$, then what is the value of $$(x+y+z)^{3}$$ ?

Solution

Given : $$\dfrac{x^{2}}{yz}+\dfrac{y^{2}}{zx}+\dfrac{z^{2}}{xy}=3$$

=> $$\dfrac{x^3+y^3+z^3}{xyz}=3$$

=> $$x^3+y^3+z^3=3xyz$$

=> $$x^3+y^3+z^3-3xyz=0$$

=> $$(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=0$$

=> $$x+y+z=0$$

Cubing both sides, we get :

=> $$(x+y+z)^3=0$$

=> Ans - (A)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App