If $$\dfrac{x^{2}}{yz}+\dfrac{y^{2}}{zx}+\dfrac{z^{2}}{xy}=3$$, then what is the value of $$(x+y+z)^{3}$$ ?
Given : $$\dfrac{x^{2}}{yz}+\dfrac{y^{2}}{zx}+\dfrac{z^{2}}{xy}=3$$
=> $$\dfrac{x^3+y^3+z^3}{xyz}=3$$
=> $$x^3+y^3+z^3=3xyz$$
=> $$x^3+y^3+z^3-3xyz=0$$
=> $$(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=0$$
=> $$x+y+z=0$$
Cubing both sides, we get :
=> $$(x+y+z)^3=0$$
=> Ans - (A)
Create a FREE account and get: