Let the consecutive even natural numbers be $$x$$ , $$(x+2)$$
Sum of their squares = $$(x)^2+(x+2)^2=52$$
=> $$x^2+(x^2+4x+4)=52$$
=> $$2x^2+4x+4-52=0$$
=> $$x^2+2x-24=0$$
=> $$x^2+6x-4x-24=0$$
=> $$x(x+6)-4(x+6)=0$$
=> $$(x-4)(x+6)=0$$
=> $$x=4,-6$$
Since, the numbers are natural, thus $$x \neq -6$$
$$\therefore$$ Numbers are = 4, 6
=> Ans - (C)
Create a FREE account and get: