If $$x + y + z = 6, xyz = -10$$ and $$x^2 + y^2 + z^2 = 30$$, then what is the value of $$(x^3 + y^3 + z^3)$$?
$$(x + y + z)^2 =Â x^2 + y^2 + z^2 + 2(ab + bc + ac)$$
$$6^2 = 30 + 2(ab + bc + ac)$$
(ab + bc + ac) = 3
$$x^3 + y^3 + z^3 - 3abc = (a+b+c)(a^2+b^2+c^2 -ab - bc - ac)$$
$$x^3 + y^3 + z^3 = 6 \times (30 - 3) + 3 \times (-10)$$
$$x^3 + y^3 + z^3 = 162 - 30 = 132$$
Create a FREE account and get: