A quadratic equation : $$ax^2 + bx + c = 0$$ has real roots iff Discriminant, $$D = b^2 - 4ac \geq 0$$
(A) : $$4x^{2}-3x+6=0$$
=> D = $$(-3)^2 - 4(4)(6) = 9 - 96 = -87$$
(B) :Â $$2x^{2}+7x+6=0$$
=>Â D = $$(7)^2 - 4(2)(6) = 49 - 48 = 1$$
(C) :Â $$x^{2}-2x+4=0$$
=> D = $$(-2)^2 - 4(1)(4) = 4 - 16 = -12$$
(D) :Â $$3x^{2}-4x+3=0$$
=>Â D = $$(-4)^2 - 4(3)(3) = 16 - 36 = -20$$
Thus, the equation :Â $$2x^{2}+7x+6=0$$ has real roots.
Create a FREE account and get: