Question 81

If 3x + 2 ≥ x - ­1 and 2x -­ 4 ≤ 2 - ­x/3; then x can take which of the following values?

Solution

Expression 1 : 3x + 2 ≥ x - ­1

=> $$3x-x \geq -1-2$$

=> $$2x \geq -3$$

=> $$x \geq \frac{-3}{2}$$ ---------(i)

Expression 2 : 2x -­ 4 ≤ 2 - ­x/3

=> $$2x+\frac{x}{3} \leq 2+4$$

=> $$\frac{7x}{3} \leq 6$$

=> $$x \leq \frac{18}{7}$$ --------(ii)

Combining inequalities (i) and (ii), we get : $$\frac{-3}{2} \leq x \leq \frac{18}{7}$$

The only value that $$x$$ can take among the options = 1

=> Ans - (D)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App