Question 8

If $$\alpha, \beta$$ are the roots of the equation $$x^2 + 3x - 3$$ , then the value of $$(\alpha + 1)^{-1} + (\beta +1)^{-1}$$ is equal to


$$\frac{1}{\alpha\ +1}+\frac{1}{\beta\ +1}=\frac{\left(\alpha\ +\beta\ +2\right)}{\alpha\ \beta\ +\alpha\ +\beta\ +1}$$

Since $$\alpha\ ,\beta\ $$ are roots of the given equation:

$$\alpha+\beta\ =-3$$

$$\alpha\times\beta\ =-3$$

Then we have: $$\frac{\left(\alpha\ +\beta\ +2\right)}{\alpha\ \beta\ +\alpha\ +\beta\ +1}=\frac{\left(-3+2\right)}{-3-3+1}=\frac{1}{5}$$

Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 40+ previous papers with solutions PDF
  • Top 500 MBA exam Solved Questions for Free

Related Formulas With Tests


Boost your Prep!

Download App