What is the value of equation $$a^3 + b^3 + c^3 - 3abc$$ if $$a^2 + b^2 + c^2 = ab + bc + ca + 4$$ and $$a + b + c = 4$$
Given : $$a + b + c = 4$$ -----------(i)
and $$a^2 + b^2 + c^2 = ab + bc + ca + 4$$
=>Â $$a^2 + b^2 + c^2 - ab - bc - ca = 4$$ ------------(ii)
To find : $$a^3 + b^3 + c^3 - 3abc$$
= $$(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$
Substituting values from equations (i) and (ii), we get :
= $$4\times4=16$$
=> Ans - (C)
Create a FREE account and get: