If 4 + 2x ≤ 6 + x and 2x + 5 < 2 + 4x; then x can take which of the following values?
Expression 1 : 4 + 2x ≤ 6 + x
=> $$2x-x \leq 6-4$$
=> $$x \leq 2$$ ------------(i)
Expression 2 : 2x + 5 < 2 + 4x
=> $$4x-2x$$ > $$5-2$$
=> $$2x$$ > $$3$$
=> $$x$$ > $$\frac{3}{2}$$ -----------(ii)
Combining inequalities (i) and (ii), we get : $$\frac{3}{2}$$ < $$x \leq 2$$
The only value that $$x$$ can take among the options = 2
=> Ans - (D)
Create a FREE account and get: