Question 77

Segment AB is parallel to segment CD. AD intersects BC in E. If lengths of AE, BC and ED are 10 cm, 15 cm and 15 cm, what is the length of EC?

Solution

Given : AB is parallel to CD. AE = 10 cm ,  BC = 15 cm and ED = 15 cm

To find : EC = ?

Solution : Let $$EC = x$$ cm

In $$\triangle$$ BAE and $$\triangle$$ CDE

=> $$\angle$$ ABE = $$\angle$$ DCE    (Alternate interior angles)

=> $$\angle$$ BAE = $$\angle$$ CDE    (Alternate interior angles)

=> $$\angle$$ AEB = $$\angle$$ CED    (Vertically opposite angles)

Thus, $$\triangle$$ BAE $$\sim$$ $$\triangle$$ CDE  (AAA criteria)

$$\therefore$$ $$\frac{AE}{DE} = \frac{EB}{EC}$$

=> $$\frac{10}{15}=\frac{(15-x)}{x}$$

=> $$\frac{(15-x)}{x}=\frac{2}{3}$$

=> $$45-3x=2x$$

=> $$2x+3x=5x=45$$

=> $$x=\frac{45}{5}=9$$ cm

=> Ans - (D)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App