Question 76

Which value among $$\sqrt[3]{5},\sqrt[4]{6},\sqrt[6]{12},\sqrt[12]{276}$$ is the largest ?

Solution

Values : $$\sqrt[3]{5},\sqrt[4]{6},\sqrt[6]{12},\sqrt[12]{276}$$

Taking L.C.M. of exponents, => L.C.M.(3,4,6,12) = 12

Now, multiplying all the exponents by 12, we get :

Values : $$(5)^4,(6)^3,(12)^2,(276)^1$$

= $$625,216,144,276$$

Thus, $$625\equiv \sqrt[3]{5}$$ is the largest.

=> Ans - (A)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App