Expression : $$\frac{cosecA-1}{cosecA+1}$$
= $$(\frac{1}{sinA}-1)\div(\frac{1}{sinA}+1)$$
= $$(\frac{1-sinA}{sinA})\div(\frac{1+sinA}{sinA})$$
= $$(\frac{1-sinA}{sinA}) \times (\frac{sinA}{1+sinA})$$
= $$\frac{1-sinA}{1+sinA}$$
Multiplying both numerator and denominator by $$(1+sinA)$$
= $$\frac{1-sinA}{1+sinA}$$ $$\times \frac{(1+sinA)}{(1+sinA)}$$
= $$\frac{1-sin^2A}{(1+sinA)^2} = \frac{cos^2A}{(1+sinA)^2}$$
= $$(\frac{cosA}{1+sinA})^2$$
=> Ans - (C)
Create a FREE account and get: