Question 76

If (cosecA ­-1)/(cosecA + 1) = x, then the value of x is

Solution

Expression : $$\frac{cosecA-1}{cosecA+1}$$

= $$(\frac{1}{sinA}-1)\div(\frac{1}{sinA}+1)$$

= $$(\frac{1-sinA}{sinA})\div(\frac{1+sinA}{sinA})$$

= $$(\frac{1-sinA}{sinA}) \times (\frac{sinA}{1+sinA})$$

= $$\frac{1-sinA}{1+sinA}$$

Multiplying both numerator and denominator by $$(1+sinA)$$

= $$\frac{1-sinA}{1+sinA}$$ $$\times \frac{(1+sinA)}{(1+sinA)}$$

= $$\frac{1-sin^2A}{(1+sinA)^2} = \frac{cos^2A}{(1+sinA)^2}$$

= $$(\frac{cosA}{1+sinA})^2$$

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App