Question 75

If $$a^3 - b^3 = 899  and  a - b = 29,  then  (a - b)^2 + 3ab$$ is equal to:

Solution

As we know the identity :

 $$a^3 - b^3 = (a - b) ( a^2 + ab + b^2 )$$

$$\therefore  899 = 29 * (a^2 + ab + b^2)$$

$$\therefore (a^2 + ab + b^2) = 899\div29$$

So $$(a^2 + ab + b^2 ) = 31$$

$$\Rightarrow(a^2 + ab + b^2 - 2ab + 2ab)= 31$$

$$\Rightarrow(a - b)^2 + 3ab = 31$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App