Sign in
Please select an account to continue using cracku.in
↓ →
If $$a^3 - b^3 = 899 and a - b = 29, then (a - b)^2 + 3ab$$ is equal to:
As we know the identity :
$$a^3 - b^3 = (a - b) ( a^2 + ab + b^2 )$$
$$\therefore 899 = 29 * (a^2 + ab + b^2)$$
$$\therefore (a^2 + ab + b^2) = 899\div29$$
So $$(a^2 + ab + b^2 ) = 31$$
$$\Rightarrow(a^2 + ab + b^2 - 2ab + 2ab)= 31$$
$$\Rightarrow(a - b)^2 + 3ab = 31$$
Create a FREE account and get: