PRT is a tangent to a circle with centre O, at the point R on it. Diameter SQ of the circle is produced to meet the tangent at P and QRis joined. If $$\angle QRP = 28^\circ$$, then the measure of $$\angle$$SPR is:
$$\angle QRP = 28^\circ$$
$$\angle ORP = 90^\circ$$ (radius to tangent through pt of contact)
$$\angle QRO = \angle ORP - \angle QRP $$
$$\angle QRO =Â 90^\circ -Â 28^\circ = 62^\circ$$
Now,
$$\angle QRO =Â \angle OQR$$Â
($$ \because$$ OQ = OR(radius))
$$\angle OQR = 62^\circ$$
$$\angle RQP + \angle OQR = 180^\circ$$
$$\angle RQP =Â 180^\circ -Â 62^\circ =Â 118^\circ$$
In the $$\triangle$$OPR,
$$\angle SPR + \angle RQP + \angle QRPÂ = 180^\circ$$
$$\angle SPR =Â 180^\circ -Â 118^\circ -Â 28^\circ = 34^\circ$$
Create a FREE account and get: