Ina $$\triangle$$ABC, the bisectors of $$\angle$$B and $$\angle$$C meet at point O,inside the triangle. If $$\angle$$BOC = $$122^\circ$$, then the measure of $$\angle$$A is
In  $$\triangle$$OBC ,
$$\angle$$OBC +Â $$\angle$$BOC +Â $$\angle$$OCB = 180$$\degree$$
$$\angle$$OBC + $$\angle$$OCB =Â 180$$\degree$$ -Â 122$$\degree$$ = 58$$\degree$$
$$\angle$$B + $$\angle$$C = 2Â $$\times$$Â 58$$\degree$$ = 116$$\degree$$
$$\angle$$A = 180$$\degree$$ -Â 116$$\degree$$ = 64$$\degree$$
So , the answer would be Option a)64$$\degree$$.
Create a FREE account and get: