Question 74

Ina $$\triangle$$ABC, the bisectors of $$\angle$$B and $$\angle$$C meet at point O,inside the triangle. If $$\angle$$BOC = $$122^\circ$$, then the measure of $$\angle$$A is

Solution

In  $$\triangle$$OBC ,

$$\angle$$OBC + $$\angle$$BOC + $$\angle$$OCB = 180$$\degree$$

$$\angle$$OBC + $$\angle$$OCB = 180$$\degree$$ - 122$$\degree$$ = 58$$\degree$$

$$\angle$$B + $$\angle$$C = 2 $$\times$$ 58$$\degree$$ = 116$$\degree$$

$$\angle$$A = 180$$\degree$$ - 116$$\degree$$ = 64$$\degree$$

So , the answer would be Option a)64$$\degree$$.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App