If $$x^{4} + x^{2} y^{2} + y^{4} = 273$$ and $$x^{2} -Â xy + y^{2} = 13$$, then the value of xy is :
$$x^{2} - xy + y^{2} = 13$$ ---(1)
$$\Rightarrow$$Â $$x^{4} + x^{2} y^{2} + y^{4} = 273$$
$$\Rightarrow$$ $$(x^{2} + xy + y^{2})(x^{2} - xy + y^{2}) = 273$$ ---(2)
put the value of eq(1) in eq(2)-
$$(x^{2} + xy + y^{2})(13) =Â 273$$
$$\Rightarrow$$ $$(x^{2} + xy + y^{2})Â = 21$$
$$\Rightarrow$$ $$(x^{2} + xy + y^{2} + xy - xy) = 21$$
$$\Rightarrow$$ $$(x^{2} - xy + y^{2} + 2xy) = 21$$
put the value from eq(1)
13 + 2xy = 21
$$\Rightarrow$$ 2xy = 8
$$\Rightarrow$$ xy = 4
$$\therefore$$ The value of xy is 4.
Create a FREE account and get: