Question 74

If $$x^3 — 6x^2 + ax + b$$ is divisible by $$(x^2 — 3x + 2)$$, then the values of a and b are:

Solution

Given, $$x^3—6x^2+ax+b$$ is divisible by $$(x^2 — 3x + 2)$$

Let the quotient when $$x^3 — 6x^2 + ax + b$$ is divisible by $$(x^2 — 3x + 2)$$ be $$x-p$$

$$\Rightarrow$$ $$(x^2—3x+2)\left(x-p\right)=x^3—6x^2+ax+b$$

$$\Rightarrow$$  $$x^3-3x^2+2x-px^2+3px-2p=x^3—6x^2+ax+b$$

$$\Rightarrow$$  $$x^3-\left(3+p\right)x^2+\left(2+3p\right)x-2p=x^3—6x^2+ax+b$$

Comparing both sides,

$$-\left(3+p\right)=-6$$

$$\Rightarrow$$  $$p=3$$

$$2+3p=a$$

$$\Rightarrow$$  $$2+3\left(3\right)=a$$

$$\Rightarrow$$  $$a=11$$

$$-2p=b$$

$$\Rightarrow$$  $$-2\left(3\right)=b$$

$$\Rightarrow$$  $$b=-6$$

$$\therefore\ $$ a = 11 and b = -6

Hence, the correct answer is Option C


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App