If $$x^3 — 6x^2 + ax + b$$ is divisible by $$(x^2 — 3x + 2)$$, then the values of a and b are:
Given, $$x^3—6x^2+ax+b$$ is divisible by $$(x^2 — 3x + 2)$$
Let the quotient when $$x^3 — 6x^2 + ax + b$$ is divisible by $$(x^2 — 3x + 2)$$ be $$x-p$$
$$\Rightarrow$$ $$(x^2—3x+2)\left(x-p\right)=x^3—6x^2+ax+b$$
$$\Rightarrow$$ $$x^3-3x^2+2x-px^2+3px-2p=x^3—6x^2+ax+b$$
$$\Rightarrow$$ $$x^3-\left(3+p\right)x^2+\left(2+3p\right)x-2p=x^3—6x^2+ax+b$$
Comparing both sides,
$$-\left(3+p\right)=-6$$
$$\Rightarrow$$ $$p=3$$
$$2+3p=a$$
$$\Rightarrow$$ $$2+3\left(3\right)=a$$
$$\Rightarrow$$ $$a=11$$
$$-2p=b$$
$$\Rightarrow$$ $$-2\left(3\right)=b$$
$$\Rightarrow$$ $$b=-6$$
$$\therefore\ $$ a = 11 and b = -6
Hence, the correct answer is Option C
Create a FREE account and get: