Question 74

If $$x + \frac{1}{x} = \frac{17}{4}, x > 1$$, then what is the value of $$x - \frac{1}{x}?$$

Solution

$$x+\frac{1}{x}=\frac{17}{4}$$

$$\left(x+\frac{1}{x}\right)^2=\frac{289}{16}$$

$$x^2+\frac{1}{x^2}+2=\frac{289}{16}$$

$$x^2+\frac{1}{x^2}=\frac{289}{16}-2$$

$$x^2+\frac{1}{x^2}=\frac{257}{16}$$

$$x^2+\frac{1}{x^2}-2=\frac{257}{16}-2$$

$$\left(x-\frac{1}{x}\right)^2=\frac{257-32}{16}$$

$$\left(x-\frac{1}{x}\right)^2=\frac{225}{16}$$

$$x-\frac{1}{x}=\frac{15}{4}$$

Hence, the correct answer is Option D


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App