Question 74

If $$\left(X + \frac{1}{x} = 10\right)$$, what is the value of $$\left(x^{4} + \frac{1}{x^{4}}\right)$$?

Solution

$$x + \frac{1}{x} = 10$$

On squaring both sides.

We get 

$$\left(x+\frac{1}{x}\right)^2=10^2$$
$$\left(x^2+\frac{1}{x^2}+2\right)=100$$
$$\left(x^2+\frac{1}{x^2}\right)=98$$

Again squaring both sides. We get:
$$\left(x^2+\frac{1}{x^2}\right)^2=98^2$$
$$(x^4+\frac{1}{x^4}+2)=9604$$
$$x^4+\frac{1}{x^4}=9602$$

This is a question from previous year actual exam. The question is incorrect in the exam itself.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App