Given that $$a+b=5$$ and $$ab=3$$
We know that, $$(a+b)^3=a^3+b^3+3ab(a+b)$$
$$\Rightarrow a^3+b^3=(a+b)^3-3ab(a+b)-----------(i)$$
Now, substituting the values in the equation (i)
So, $$\Rightarrow a^3+b^3=(5)^3-3\times 3(5)$$
$$\Rightarrow a^3+b^3=125-45$$
$$\Rightarrow a^3+b^3=80$$
Create a FREE account and get: