Question 74

If $$a + b = 27$$ and $$a^3 + b^3 = 5427$$, then find $$ab$$.

Solution

Given,  $$a + b = 27$$

$$a^3 + b^3 = 5427$$

$$=$$>  $$\left(a+b\right)\left(a^2+b^2-ab\right)=5427$$

$$=$$>  $$27\left(a^2+b^2+2ab-3ab\right)=5427$$

$$=$$>  $$\left(a+b\right)^2-3ab=201$$

$$=$$>  $$\left(27\right)^2-3ab=201$$

$$=$$>  $$729-3ab=201$$

$$=$$>  $$3ab=729-201$$

$$=$$>  $$3ab=528$$

$$=$$>  $$ab=176$$

Hence, the correct answer is Option C


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App