If $$5cot\theta=3$$, find the value of $$\frac{6sin\theta-3cos\theta}{7sin\theta+3cos\theta}$$.
$$5cot\theta=3$$
$$cot\theta=3/5$$
$$\frac{6sin\theta-3cos\theta}{7sin\theta+3cos\theta}$$
=Â $$\frac{sin\theta(6-\frac{3cos\theta}{sin\theta})}{sin\theta(7 +Â \frac{3cos\theta}{sin\theta})}$$
= $$\frac{6 - 3cot\theta}{7 + 3cot\theta}$$
Put the value of cot$$\theta$$,
= $$\frac{6 - 3 \times \frac{3}{5}}{7 + 3\times \frac{3}{5}}$$
= $$\frac{6 -\frac{9}{5}}{7 + \frac{9}{5}}$$
=$$\frac{21}{44}$$
Create a FREE account and get: